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LETTER TO THE EDITOR 

Chiral Potts model on a Cayley tree with complete and 
incomplete devil’s staircase 

C S 0 Yokoi and M J de Oliveira 
Instituto de Fisica, Universidade de Slo Paulo, Caixa Postal 20516, SHo Paulo, Brazil 

Received 5 December 1984 

Abstract. The three-state chiral Potts model on a Cayley tree is analysed in the limit of 
infinitely large coordination number. The fractal dimensionalities of the wavenumber 
against chiral field curves are computed. It is shown that they change from a complete to 
an incomplete devil’s staircase as the temperature is raised. Commensurate phase boun- 
daries are determined analytically for high and low temperatures, and the discommensur- 
ations are shown to result from tangent bifurcations. 

Systems exhibiting spatially modulated structures, commensurate or incommensurate 
with the underlying lattice, are of current interest in condensed matter physics (see 
e.g. Bak 1982). Among the idealised systems for modulated ordering, the axial next- 
nearest-neighbour Ising (ANNNI) model, originally introduced by Elliott (1961) to 
describe the sinusoidal magnetic structure of Erbium, and the chiral Potts model, 
introduced by Ostlund (198 1) and Huse (1981) in connection with monolayers adsorbed 
on rectangular substrates, have been studied extensively by a variety of techniques. A 
particularly interesting and powerful method is the study of modulated phases through 
the measure-preserving map generated by the mean-field equations, as applied by Bak 
(1981) and Jensen and Bak (1983) to the ANNNI model. The main drawback of the 
method lies in the fact that thermodynamic solutions correspond to stationary but 
unstable orbits, which makes the numerical work quite laborious. However, when 
these models are defined on Cayley trees, as in the case of the Ising model with 
competing interactions examined by Vannimenus (1981), it turns out that physically 
interesting solutions correspond to the attractors of the mapping. This simplifies the 
numerical work considerably, and detailed study of the whole phase diagram becomes 
feasible. Apart from the intrinsic interest attached to the study of models on trees, it 
is possible to argue that the results obtained on trees provide a useful guide to the 
more involved study of their counterparts on crystal lattices. 

In this letter we analyse the chiral Potts model on a Cayley tree, or rather on a 
Bethe lattice (Baxter 1982), since we are concerned with the local properties of the 
innermost region. All the sites have coordination number z, except the outermost sites 
(first generation) and the innermost site (last generation) which have coordination 
numbers 1 and z - 1, respectively. Associated with each site i there is a p-state spin 
Si, which may assume the values e,, =(cos2m/p ,  sin2m/p,O),  with n = 
0, 1,2, . . . , p - 1. The Hamiltonian contains two competing interactions; the usual 
exchange interactions which tend to align the spins and the Dzyaloshinsky-Moriya 
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interactions which tend to rotate the spins, i.e., 

X= -JI S, * SI - J2 ( S ,  XS,) * 2', 
( I] ' ( 0 ) 

where the summations are over nearest-neighbour pairs such that SI and SI belong to 
the Ith and ( I +  1)th generations, respectively. The Hamiltonian is customarily written 
in the form (Ostlund 1981) 

2T X= -J COS -(n, - ",+A), 
(11 P 

where J and the chiral field A are related to J ,  and J2 through J ,  = J c o s ( 2 ~ A l p )  and 
J2 = J sin(2nAlp). 

Let p c '  be the probability of the innermost spin of an Nth generation tree being 
in the state n. One can relate p g )  to pg?l according to standard procedures (Baxter 
19821, with the result 

2T 

P 
~ $ 2 ,  exp PJ  cos -(n - n ' - A )  

where N n - ,  is the normalisation factor such that Z { : b p $ ' =  1. This represents a 
( p  - 1)-dimensional mapping on the variables p'"' .  The interesting fact is that when 
the 'mean-field limit' z + CO is taken, with Jz  = J =  constant, the mapping reduces to a 
two-dimensional one, irrespective of the number of states p. As a matter of fact, it is 
possible to express the mapping directly in terms of the complex magnetisation, 
m = rn, + im,, in the form 

p-1 1 P - 1  

n=O "-1 n=O 
mN = c p$!. le,  =- c en exp (1)  

where eo, e , ,  . . . , eP-,  are the p roots of unity, and T = 2 / p j  is the reduced temperature. 
In what follows we will report the main findings concerning the three-state model 
( p  = 3) in the mean-field limit ( z +  CO). 

The mapping ( 1 )  can best be visualised in the complex m = m, + im, plane where 
the magnetisation of each generation is represented by a point inside the equilateral 
triangle with vertices eo, e , ,  and e,. The equilibrium configuration for a given T and 
A may be found by the repeated iteration of the recursion relation ( l ) ,  starting from 
an initial or surface magnetisation m, # 0. Numerically, we find that the magnetisation 
always approaches one of the following attractors: (a) the trivial fixed point (paramag- 
netic phase), (b) the non-trivial fixed points (ferromagnetic phase), (c) periodic cycles 
(commensurate phase) and (d) one-dimensional orbits (incommensurate phase). The 
(largest) Lyapunov number (Ott 1981) A is negative for (a)-(c) and zero for (d) within 
the numerical accuracy. The possibility of a strange attractor with A > 0 (Ott 1981), 
which would correspond to a chaotic phase (Bak 1981, Bak 1982, Jensen and Bak 
1983), cannot be ruled out a priori but it was not found in the present model. The 
principal wavenumber q is obtained as 27rn/N, where n is the number of turns of the 
magnetisation vector in N iterations, after discarding a sufficient number of initial 
iterations. Figure 1 represents the global phase diagram constructed in this way. Notice 
that only the interval 0 S A S  0.5 will be considered because of the symmetry relations 
A + -A, q + - q  and A + 1 + A ,  q + q + 2 r / 3 ,  which follow from equation (1) .  In certain 
regions of the phase diagram more than one type of attractor exists, which can be 
interpreted as phase coexistence or first-order transition. Figure 2 displays the flow 
diagram corresponding to a point where ferromagnetic and modulated phases overlap. 
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Figure 1. Phase diagram of the three-state chiral 
Potts model on a Cayley tree in the ‘mean-field limit’. 
Paramagnetic (P), ferromagnetic (F) and modulated 
(M)  phases correspond to the regions where the 
trivial fixed point, the non-trivial fixed points and 
the limit cycles, respectively, are the attractors. In 
the M region only a few commensurate phases are 
shown. Between the broken curves the F region 
overlaps the P region for T > 1 and the M region for 
T <  1 .  

Figure 2. The attractors of the mapping (1) for T = 

0.95 and A = 0.106. Some flows resulting from differ- 
ent starting points are shown. Notice the coexistence 
of two types of attractors, the ferromagnetic fixed 
points (0) and the one-dimensional orbit. The three 
separatrices and unstable fixed points (*) are also 
shown. 

The triangle is divided into four regions, three of them dominated by ferromagnetic 
fixed points, and a central region under the influence of a one-dimensional orbit. 

One of the most intriguing questions related to systems with modulated ordering 
refers to the behaviour of commensurate and incommensurate phases as a function of 
temperature (Fisher and Huse 1982). Fortunately, in the present model, commensurate 
phases can be computed accurately to a high order and a convincing answer can be 
given. Figure 3 shows the wavenumber against chiral field curve for three different 
temperatures. Numerically we observe that commensurate phases become stable at 
every rotational value of 4/27r. Moreover, all commensurate phases with wavenumber 
of the form q = 27rm/3n, for given n, have roughly the same width. The curve bears 
some resemblance to the Cantor’s devil’s staircase (Mandelbrot 1977) at low tem- 
peratures. The fractal dimensionality (Mandelbrot 1977) DF associated with the set 
of points in between the level treads (commensurate phases) can be thought of as a 
measure of the relative importance of the incommensurate phases. DF may be estimated 
(Mandelbrot 1977) by the slope of log(L(E)/E) as a function of log( l / ~ ) ,  where E is 
the scale which we choose to be the widths of the phases q = 2 ~ / 3 n ,  and L( E )  = 
0 . 5 - S ( ~ ) ,  where S ( E )  is the total length of the commensurate phases with widths 
larger than E. We observe that DF should be interpreted as an ‘average’ fractal 
dimensionality, for the staircase lacks perfect self-similarity. In figure 4 we show the 
result for various temperatures. Since L( E )  - E ‘ - D ~ ,  DF < 1 implies that incommensur- 
ate phases have zero measure and the devil’s staircase is complete (Bak 1982). 
However, when DF reaches unity their measure becomes non-zero and the staircase 
is incomplete (Bak 1982). Accordingly, as shown in inset of figure 4, the devil’s staircase 
changes from complete to incomplete as the temperature is raised. 
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Figure 3. Devil’s staircase for three different tem- 
peratures. The staircase are shifted along the q axis 
and the scale in the A axis is different for each 
temperature. Only commensurate phases with 
widths larger than about O.OOOO3 are shown. (a) 

0.25 (A, = 0.367 924, A2 = 0.483 992) ; (c) T3 = 0.30 
( A ,  =0.347 231, A2 =0.486488). 

T,=O.l5 (AI=O.412308, Az=0.481 695); (b) Tz= 

1 I I 

102 I O ‘  
1 / E  

Figure 4. Log-log plot of L ( E ) / E  as a function of 
I / E  for various temperatures. The slope of the 
straight line fitted to the points gives the fractal 
dimensionality D, associated with the devil’s stair- 
case. The inset shows the temperature dependence 
of D,. (a) T=0.01 (b) T=0.05 (c) T=O.I5 (d) 
T = 0.40. 

Even though at intermediate temperatures numerical solution is the only viable 
alternative, at high and low temperatures analytic study becomes feasible. Thus, at 
high temperatures one can develop the RHS of equation (1) in power series and seek 
solution of the form mN = m, exp(iqN) + mZq exp( -2iqN) + m4, exp (4iqN) + 
m-5q exp(-5iqN) + . . . . To leading order in f = T,- T = 1 - T we obtain 

q = $ a A - I  3 f  cot(rrA)+0(t2) 

m, = 2( t/3)’” exp(i4) + O(t3/’) ,  

mZq = $ r  cosec(?rA) exp[i(-.rrA+fa-24)]+O(t2), 

and in general m , , q - f ” / 2 .  The phase angle 4 is arbitrary for incommensurate 
wavenumber q. For commensurate wavenumber of the form q = 2am/3n the phase 
angle 4 is determined by the (3n - 1)th term in the expansion. For example, for 
q = 2a/6  the 5th-order term implies that 4 should vary from generation to generation 
as 

4N = ~ N - l + $ . r r A - f a - ~ t 2 s i n 6 ~ N - 1 + O ( f 3 ) .  (2) 
For A > Ac = f - t2 /  12077 + O( t 3 )  the iteration of the recursion relation (2) leads always 
to a fixed point; this corresponds to the stability region of the commensurate phase 
q = 2 ~ / 6 .  For A < Ac a tangent bifurcation occurs (Eckmann 1981, Fisher and Huse 
1982), and 4 is trapped for very many iterations near the values (2n + 1)a/12, and 
varies widely between these values, which correspond to ‘discommensurations’ or 

I 



Letter to the Editor L157 

'defects' (Bak 1982, Vannimenus 1981, Fisher and Huse 1982). As shown in the theory 
of intermittency (Manneville and Pomeau 1980) the number of iterations executed 
near these quasi-6-cycles is proportional to [A - so the wavenumber approaches 
~ / 6  as ~ / 6  - q - IA - The stability of higher-order commensurate phases can 
be studied analogously. In general we observe that the width of a commensurate phase 
q = 2 ~ m / 3 n  should approach zero at T =  T,= 1 as t(3"-2)/2 in the form of sharp cusps. 
The exception is the ferromagnetic phase which has a flat parabolic boundary given 
asymptotically by A, = (3/2~)($t)'/ '. 

At low temperatures the magnetisation is exponentially close to the sides of the 
equilateral triangle. In the ferromagnetic phase close to the multiphase point A = 0.5 
the phase angle 4 obeys asymptotically the recursion relation 

The fixed point exists for A < A, = f + ( & / 4 ~ )  T In T. For A > A, a tangent bifurcation 
occurs and the previous discussion applies. In particular the envelope of the com- 
mensurate wavenumbers near A, should vary as IA - A,l'/2. Other phase boundaries 
can be analysed in similar fashion, and they all meet at the multiphase point with zero 
derivative. 

The model we have studied here, although defined on a tree, shares many properties 
with models defined on crystal lattices (Bak 1982, Ostlund 1981), including the existence 
of complete and incomplete devil's staircase. However, some peculiarities are worth 
pointing out, such as the square root dependence of the wavenumber near commensur- 
ate phases, and the fact that the transition remains continuous down to T = 0. A more 
thorough study of the p-state model on a z-coordinate tree is under way. 

We would like to acknowledge Professor Per Bak for useful discussions in the early 
stages of this work, and Professor Herrmann for calling our attention to his related 
work on the same model. Fesser and Herrmann (1984), however, have analysed 
completely different aspects of the model. 
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